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Abstract

Disentangling higher level generative factors as disjoint latent dimensions offer several bene-
fits such as ease of deriving invariant representations, targeted data augmentation with style-
transfer, better interpretability of the data, etc. In this work, we focus on disentangling factors
of variation with weak-supervision (in the form of pair-wise similarity labels) using a non-
adversarial approach. We show compelling results for both the quality of disentangled repre-
sentations and image generation for MNIST and CMU MultiPIE datasets, and UTK-face and
CelebA datasets for cross-dataset evaluation. We further demonstrate few-shot learning of new
previously-unseen classes as a consequence of effective disentangling of the latent subspace (into
style and class).

Keywords: Disentangling Factors of Variation, Generative Adversarial Networks, Cycle-Consistent
Architecture, Auto-encoders, Few-shot learning.
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Chapter 1

Introduction

Machine learning algorithms perform better when supplied with effective feature representations

of the raw data. Nowadays we see extensive use of deep learning models owing to their capability

of producing (generally) better results. When looked upon with a different perspective, the

working of a deep learning model can be interpreted in a way where the initial layers supply a

suitable representation to their successors for successfully performing the task at hand. This,

strengthens the need for producing effective representations of raw data. The effectiveness of a

representation depends upon how well it captures the underlying latent factors that are relevant

for the end task while ignoring the inconsequential or nuisance factors. The disentangling branch

of representation learning paradigm focuses on producing disjoint subsets of the latent space

which can later be used for various tasks.

Learning disentangled representations offer several advantages, such as (i) ease of deriving in-

variant representations which help in making the learned representations invariant of the factors

inconsequential to the task at hand (for instance - pose, expression and illumination-setting

invariant facial recognition); (ii) targeted data augmentation with style-transfer for producing

more labeled-data to train upon; and (iii) few-shot learning ability - with the class and style

separated it is now easier and to learn a new previously-unseen class with only a few samples at

hand.

In this work, we focus on disentangling factors of variation with weak-supervision (in the form of

pair-wise similarity labels) using a non-adversarial cycle-consistent variational autoencoder based

approach [3]. We show compelling results for both the quality of disentangled representations and

image generation on MNIST and CMU MultiPIE datasets, and UTK-face and CelebA dataset

for cross-dataset evaluation. We further demonstrate few-shot learning of new previously-unseen

classes as a consequence of effective disentangling of the latent subspace (into style and class).

The experiments section is divided into three subsections presenting the results based of quality

of generated images and disentangled representations in the first two sections, and presenting

the experiments with which we gained valuable insight regarding the problem and our model’s

performance. The quality of generated images section talks about our model competence when

compared with Mathieu et al.’s [1] and Szabó et al.’s [2] work on the grounds of style-transfer
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renderings, and demonstrates the effectiveness of learned disentangled subspaces using our model

through compelling interpolation in the latent space, random sampling of the style space, and

few-shot learning of previously unseen classes results. The next sub-section quantifies the purity

of the disentangled subspaces and demonstrates our model’s robustness to dimensionality change

as compared to others. Finally, we discuss the results of DR-GAN by Tran et al. [21] for face

frontalization and our efforts to improvement of image reconstruction quality experiments which

lead to some valuable insights regarding the problem at hand and our model’s working.
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Chapter 2

Literature Survey

Auto-encoders :

Auto-encoders [4] [5] learn a latent-representation mapping of the input by minimizing the

reconstruction error. The dimensionality of the latent space learnt can be either more, for

sparse auto-encoders (weight normalization is done to prevent the degenerate solution) or less,

for bottleneck auto-encoders, than the input dimension.

An auto-encoder consists of an encoder E and a decoder D. The encoder first maps the input

data X into the latent space H = φ(E{X}), where φ is a non-linear activation function. The

decoder then maps this latent representation back to the input space X̃ = D{H}. During the

training phase, the encoder E and the decoder D are (usually) learnt by minimizing the following

loss function :

arg min
D,E
||X̃ −X||2F (2.1)

Variational Auto-encoder (VAE) :

Kingma et al. [6] present a variational inference approach for the auto-encoder based latent

factor model. Consider the dataset X = {xi}, ∀i ∈ {1, |X|}, where, xi’s are i.i.d samples each

associated with a continuous latent variable zi sampled from some prior p(z) (generally, a variant

of the standard normal distribution). The encoder, in the auto-encoder model, approximates

the posterior term qφ(z|x) and the decoder approximates the likelihood term pθ(x|z) here, with

φ and θ being the weights of the encoder and the decoder respectively. The encoder and the

decoder are learnt by optimizing the following variational lower-bound :

L(φ, θ;x) = Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p(z)) (2.2)

where,KL(p(x)||q(x)) =
∑
x∈X

p(x) log
p(x)

q(x)
(2.3)

Where the loss function comprises of the expected value of the data likelihood and the KL-

divergence term - which forces the learnt approximate posterior to align with the prior distribu-

3



tion of the latent space p(z). Since sampling is not backpropagate-able, the authors use a linear

transformation based reparameterization to enable the end-to-end training of the model. When

learnt well (sufficiently small KL-divergence between the approximate posterior and the prior)

VAE’s can be used to generate data belonging to a favourable class (on which it was learnt on)

by sampling from the prior p(z) and passing this through the decoder.

Generative Adversarial Networks(GANs) :

GANs by Goodfellow et al. [7] have been shown to model complex, high dimensional data

distributions and generate nice results from it. They comprise of two competing neural networks,

trained together in an adversarial setting by optimizing the following loss function :

(2.4)max
G

min
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))]

The discriminator D outputs the probability that a given sample belongs to input data distribu-

tion as opposed to being a sample from the generator generated distribution. On the other hand,

the generator G is trained to map random samples from a prior distribution (usually, a variant of

the standard normal distribution) in the latent space to samples from the true distribution. The

training is said to have converged when the discriminator outputs 1
2 for all generated samples.

DCGANs [8] use CNNs as a part of the GAN architecture to generate samples from complex

image distributions.

Despite of their ability generate compelling results, training GANs is quite tricky and requires

carefully designed tricks [9].

Figure 2.1: DR-GAN model

Adversarial Auto-encoders(AAE) :

Inspired by the idea of variational autoencoders, adversarial auto-encoders [10] use adversarial

training instead of the standard KL-divergence loss to align the approximate posterior (learnt

by the encoder) with an arbitrary prior distribution over the latent space variables.
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Figure 2.2: Mathieu et al. model training architecture. The inputs x1 and x′1 are two different
samples with the same label, whereas x2 can have any label.

The model is trained in two-phases : the reconstruction phase, and the regularization phase. The

reconstruction phase, is a standard auto-encoder branch where in the encoder and the decoder

are learnt by minimizing the reconstruction error. Where as, the regularization phase forces

the encoder to learn an approximate posterior which aligns with the prior distribution over the

latent space variables by minimizing the adversarial cost of distinguishing between the positive

samples belonging to the posterior form the negative samples belonging to the arbitrary prior.

Conditional - GANS (CGANs) :

CGANs [11] propose a way to generate data using GANs conditioned on some information y.

This just amends the cost function of GANs s.t. the data and the prior are conditioned on the

an auxiliary information random variable y.

(2.5)max
G

min
D

V (G,D) = Ex∼pdata(x|y)[logD(x)] + Ez∼pz(z)[log(1−D(G(z|y))]

SSGANS :

SSGANs [12] change the discriminator of the GANs to now output the class labels too, i.e. for

a dataset with N class labels, the discriminator D needs to predict one of the N + 1 classes (N

authentic/legible classes, plus, one fake/ill-legible class). The suggested change is implemented

by replacing sigmoid with softmax as the activation function for the last layer of the network.

PixelVAE :

PixelVAE [25] is a VAE model with an autoregressive decoder based on PixelCNN. The model

requires very few expensive autoregressive layers compared to PixelCNN and learns latent codes

that are more compressed than a standard VAE while still capturing most non-trivial struc-

ture. Essentially, the model implements a tractable likelihood function (unlike the approximate

estimated-lower-bound (ELBO) likelihood function used by the vanilla VAE) with the help of

an autoregressive decoder.

Disentangling factors of variation : Initial works like [13] use the expectation-maximization

(EM) framework to detect independent factors of variation which describe the input data. Tenen-

baum et al. [14] try to solve the problem by learning bilinear maps from unspecified and specified

parameters to images. In recent works, [15] [16] [17] Restricted Boltzmann Machines have been

used to map factors of variation in images separately. Kulkarni et al. [18] model this problem as

an inverse graphics problem and propose a network that disentangles transformation and lighting

variations. In [19] and [20], invariant representations are learnt by removing the uninformative

variables for a given task.
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DR-GAN, by Tran et al. [21] using both identity and pose labels, claim to disentangle facial

identity from pose. The architecture used is very similar to the the architectures of SSGANS,

CGANS and AAEs put together. Where in they take an input image, pass it through the en-

coder to produce a feature map. This generated feature map along with the target pose code

and random noise is fed as input to the decoder, which generates a face with same identity as

of the subject in the input image in the target pose.

This model doesn’t enforce disentangling of pose from the identity information, rather it adver-

sarially learns a decoder, which selects the identity-specific information from the feature maps

and mixes it with the target pose information in a non-linear fashion to generate an image

projected in the target pose.

Disentangling approaches, like those of Szabó et al. [2] and Mathieu et. al [1] (model - 2.2) com-

bine auto-encoders with adversarial training to disentangle specified from unspecified features

of variation based on a single factor of variation’s class labels. On the other hand, in Cyle-

Consistent VAEs [3], Jha et al. have leveraged the idea of cycle-consistency in the unspecified

latent space and to introduce a non-adversarial approach to disentangling factors of variation

problem (model - 3.1).
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Chapter 3

Methodology

In this work we extend the model proposed by Jha et. al [3] i.e. a conditional variational auto-

encoder based model, where the latent space is partitioned into two complementary subspaces:

s, which controls specified factors of variation associated with the available supervision in the

dataset, and z, which models the remaining unspecified factors of variation. Similar to Mathieu

et al.s [1] work Jha et. al keep s as a real valued vector space and z is assumed to have a standard

normal prior distribution p(z) = N (0, I). Such an architecture enables explicit control in the

specified subspace, while permitting random sampling from the unspecified subspace. Marginal

independence between z and s is assumed, which implies complete disentanglement between the

factors of variation associated with the two latent subspaces.

Encoder. The encoder can be written as a mapping Enc(x) = (fz(x), fs(x)) where fz(x) =

(µ, σ) and fs(x) = s. Function fs(x) is a standard encoder with real valued vector latent space

and fz(x) is an encoder whose vector outputs parameterize the approximate posterior qφ(z|x).

Since the same set of features extracted from x be used to create mappings to z and s, it is

modelled using a single encoder with shared weights for all but the last layer, which branches

out to give outputs of the two functions fz(x) and fs(x).

Decoder. The decoder, x′ = Dec(z, s), in this VAE is represented by the conditional likelihood

pθ(x|z, s). Maximizing the expectation of this likelihood w.r.t the approximate posterior and s

is equivalent to minimizing the squared reconstruction error.

Forward cycle. A pair of images, x1 and x2, is sampled from the dataset that have the

same class label. Then both of these images are passed through the encoder to generate the

corresponding latent representations Enc(x1) = (z1, s1) and Enc(x2) = (z2, s2). The input to

the decoder is constructed by swapping the specified latent variables of the two images. This

produces the following reconstructions: x′1 = Dec(z1, s1) and x′2 = Dec(z2, s2). Since both

these images share class labels, swapping the specified latent variables should have no effect

on the reconstruction loss function. Thus, the conditional likelihood of the decoder can be re-

written as pθ(x|z, s∗), where s∗ = fs(x
∗) and x∗ is any image with the same class label as x.

Fig. 3.1 (a) shows a diagrammatic representation of the forward cycle.
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(a) Forward Cycle

(b) Reverse Cycle

Figure 3.1: Jha et al. Model. (a) Forward Cycle : Image reconstruction done using VAEs by
swapping the s latent variable between two images from the same class. The process works with
pairwise identical labels, thus semi-supervised, - as the actual class labels of the sampled image
pair are not required. (b) Reverse cycle of the cycle-consistent VAE architecture where in a
point sampled from the z latent space is combined with class specific factors from two separate
sources, generating two different images. However, on passing these generated images through
the encoder again, we should be able to obtain the same sampled point in the z space.

min
Enc, Dec

Lforward = −Eqφ(z|x,s∗)[log pθ(x|z, s
∗)] +KL(qφ(z|x, s∗) ‖ p(z)) (3.1)

It is worth noting that forward cycle does not demand actual class labels at any given time. This

results in the requirement of a weaker form of supervision in which images need to be annotated

with pairwise similarity labels. This is in contrast with the previous works of Mathieu et al. [1],

which requires actual class labels, and Szabo et al. [2], which requires image triplets.

Reverse Cycle. The reverse cycle shown in Fig. 3.1 (b) is designed based on the idea of cycle-

consistency in the unspecified latent space. zi is sampled from the Gaussian prior p(z) = N(0, I)

over the unspecified latent space and is passed through the decoder in combination with specified

latent variables s1 = fs(x1) and s2 = fs(x2) to obtain reconstructions x′′1 = Dec(zi, fs(x1)) and

x′′2 = Dec(zi, fs(x2)) respectively. Here it is preferable that both x1 and x2 not have the same

labels. Since both images x′′1 and x′′2 are generated using the same zi, their corresponding

unspecified latent embeddings z′′1 = fz(x
′′
1) and z′′2 = fz(x

′′
2) should be mapped close to each

other, regardless of their specified factors. Such a constraint promotes marginal independence

between z and s, as images generated using different specified factors could potentially be

mapped to the same point in the unspecified latent subspace. This step directly drives the

encoder to retain only information about the unspecified factors in the z variables.

The variational loss (3.1) enables sampling of the unspecified latent variables and aids the
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generation of novel images. However, the encoder does not necessarily learn a unique mapping

from the image space to the unspecified latent space. In other words, training samples with

similar unspecified factors are likely to get mapped to significantly different unspecified latent

variables. This observation motivates our pairwise reverse cycle loss (3.2), which penalizes the

encoder if the unspecified latent embeddings z′′1 and z′′2 have a large pairwise distance, but not

if they are mapped farther away from the originally sampled point zi. This modification is in

contrast with the typical usage of cycle consistency in previous works.

min
Enc
Lreverse = Ex1,x2∼p(x), zi∼N (0,I)[|| fzi(Dec(z, fs(x1)))fz(Dec(zi, fs(x2))) ||1] (3.2)
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Chapter 4

Experiments and Results

4.0.1 Quality of generated images

This particular section contains the set of experiments which demonstrate and compare our

model’s (Jha et al. [3]) capability to generate images for the following experiments :

4.0.1.1 Style-Transfer Experiments

Here we compare our model (Jha et al. [3]) with Mathieu et al. ’s [1] and Szabó et al.’s model [2]

on the grounds their ability to transfer style for MNIST dataset and further demonstrate our

model’s ability to generate compelling style-transfer results for MultiPIE dataset with cross-

dataset evaluation on UTK-face dataset [27] and CelebA dataset. The results are referred and

organized below.

1. MNIST: Figure 4.1

2. MultiPIE: The experiments for MultiPIE dataset with images having cropped for the faces

and resizing the given images to 128x128 were carried out with specified factors as:

(a) Identity: Figure 4.8.

The model was trained on 20 unique identities with 3000:300 images per identity

defining the train:test split.

(b) Pose: Figure 4.12.

The model was trained on 16 unique poses of 20 distinct identities with 200:20 images

per identity per pose defining the train:test split.

(c) Expression : Figure 4.13.

The model was trained on 6 unique expressions on MultiPIE 51K dataset with 80:20

train:test split. Cross-dataset evaluation is performed on the UTK-face dataset.
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Figure 4.1: Image generation results on MNIST by swapping z and s variables. The top row
and the first column are randomly selected from the test set. The remaining grid is generated
by taking z from the digit in first column and s from the digit in first row. This keeps the
unspecified factors constant in rows and the specified factors constant in columns.

4.0.1.2 Linear interpolation in the manifolds

We show the variation captured in the two latent manifolds of our models by linear interpolation

for MultiPIE dataset : Figure 4.9. A smooth transition in both the identity and the style space

stresses on the fact that a linear interpolation in the learnt latent manifolds is a geodesic in the

facial image space.

4.0.1.3 Random sampling / Query

We show the reconstructions obtained on passing the latent manifolds with fixed specified do-

main(extracted from the test images) and a randomly sampling the unspecified domain through

the decoder for MultiPIE dataset : Figure 4.10. This particular experiment validates the model’s

capability to be used as a generative data-augmentation setup - to create more labelled data.

4.0.1.4 Few-shot learning results

This is similar to the “Both specified and unspecified factors from unseen identities” experiment

performed in the style-transfer sub-section. Here we study how completely unseen images from

the same dataset are captured by our model for both MNIST : Figure 4.14, MultiPIE : Figure

4.15, and CelebA (which is a completely unseen dataset for the model) : 4.16 datasets.

4.0.2 Quality of disentangled representations:

This particular section contains the set of experiments demonstrate and compare our model’s

(Jha et al.’s [3]) quality of disentangled latent subspaces.
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4.0.2.1 Classifier Accuracy

We trained a two layer MLP classifier separately on both the specified and unspecified latent

subspaces generated by each model. Since the specified features of variation are associated with

the available class labels in a dataset, the classifier accuracy is a good metric to account for

the amount of specified-feature specific information in the two latent subspaces. If the specified

factors of variation were completely disentangled, the classification accuracy in the specified

latent space should be as high as possible, while that in the unspecified latent space should be

close to chance. We also compare and check for the robustness to dimensionality change

of all the three models for MNIST dataset and CMU-MultiPIE1(Table 4.1).

4.0.2.2 Visualizing the t-SNE plots

Visualizing the t-SNE plots of both the unspecified (without reparameterization) and the spec-

ified latent subspaces. Similar to the above conjecture, the unspecified latent space t-SNE plots

should be close to a randomly scattered plot to imply effective disentangling of the specified

feature, on the other hand should be perfectly clustered for the specified latent subspace. The

results for MultiPIE dataset are placed in Figure 4.11.

1Since the training was done on a subset of the CMU-MultiPIE dataset (with 20 unique identities with
3000:300 images, for which all the possible variations were captured, per identity defining the train:test split)
thus, this performance is not meant to be taken as the state-of-the-art performance.
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Classification Accuracies

Iterations z dim s dim z train acc. z test acc. s train acc. s test acc.

MultiPIE - Identity

5,000 64 256 11.6252 12.0244 99.9983 99.9320
5,000 128 512 11.8289 12.3131 99.9749 99.7792

MultiPIE - Pose

5,000 576 64 10.9658 10.7167 99.7729 98.7432

MultiPIE - Expression

2,000 64 64 34.4543 30.2176 99.9916 83.8727

MNIST

100,000 16 16 18.0171 18.0588 99.8330 98.2872
100,000 32 32 17.0890 16.9571 99.9165 98.6177
100,000 64 64 17.1440 17.3577 99.9365 98.5777
100,000 128 128 19.1022 18.8902 99.9565 98.5176
100,000 256 256 18.8100 18.7500 99.9699 98.3874
100,000 512 512 20.5528 20.2223 99.9198 98.2672

MNIST - LeCun

100,000 16 16 69.4911 65.5749 99.6861 98.5777
100,000 32 32 63.5583 58.9743 99.9332 98.6278
100,000 64 64 71.0386 67.2876 99.9732 98.7279
100,000 128 128 62.2946 59.0845 99.3940 98.3974
100,000 256 256 60.7872 58.8241 99.9332 98.6478
100,000 512 512 59.9976 58.2732 99.8864 98.3173

MNIST - Challenges

100,000 16 16 61.7671 48.8181 99.4207 97.9667
100,000 32 32 85.3148 71.8149 99.7696 97.9767
100,000 64 64 99.3422 92.4879 99.9348 98.5977
100,000 128 128 99.1135 96.7447 99.5259 98.4575
100,000 256 256 99.9949 98.0268 99.9666 98.1169
100,000 512 512 99.9966 98.3373 99.9816 98.2672

MNIST - Wasserstien Distance

100,000 16 16 16.7935 16.3361 99.8063 98.3273

Table 4.1: Quantitative results for the MultiPIE and MNIST robustness test experiments. Clas-
sification accuracies on the z and s latent spaces are a good indicator of the amount of specified
factor information present in them. Since we are aiming for disentangled representations for
unspecified and specified factors of variation, lower is better for the z latent space and higher is
better the s latent space.
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4.0.3 Some experiments for valuable insights

With the aim to improve the image reconstruction quality of cycle consistent VAE we study the

effect of the following experiments : modifying the proposed loss function, and replacing vanilla

VAE with PixelVAE [25] in the model. The results for these experiments are validated in the

following fashion:

• Quantitative Results : We trained a two layer MLP classifier separately on both the

specified and unspecified latent subspaces generated by each model. Since the specified

features of variation are associated with the available class labels in a dataset, the classifier

accuracy is a good metric to account for the amount of specified-feature specific informa-

tion in the two latent subspaces. If the specified factors of variation were completely

disentangled, the classification accuracy in the specified latent space should be as high as

possible, while that in the unspecified latent space should be close to chance.

This is to make sure that while improving the image reconstruction quality, the change

in loss function does not worsen the quality of disentangled representations - our primary

motive.

• Style-transfer Results : The rendered images displaying the transfer of specified fea-

tures and unspecified features. Where class information or specified features are same

across the columns and style information or unspecified features are same across rows are

also reported.

This is to improve the model’s capability to be used as a generative setup for data-

augmentation.

Figure 4.2: Incorporation of reconstruction loss term in the reverse cycle loss.
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4.0.3.1 DR-GAN Implementation

With the motive to understand it’s working better we debugged the DR-GAN implementation

given on github [22] and incorporated the GAN-hacks [9] for the convergence of the model which

was trained on CMU MultiPIE dataset and tested on Celebrity Frontal-Profile images. However,

the model shows compelling face frontalization results (Figure 4.3), it doesn’t disentangle the

latent space per se. The decoder is trained to act as a sieve in order to extract the necessary

class (here, identity) information to reconstruct the frontal pose image, however, the class/style

factors can’t be retrieved separately using this particular approach.

Figure 4.3: DR-GAN results. The top row contains the input profile pose images and the bottom
row contains the output frontal pose images.

4.0.3.2 Image reconstruction quality improvement

4.0.3.2.1 Loss Function modification :

We propose modified loss functions with the introduction of: (1) adversarial loss and (2) recon-

struction loss in addition to existing cycle-consistent loss function for better image reconstruc-

tion. We also tried minimizing the (3) wasserstein distance instead of the L1 norm in the reverse

cycle.

In the proposed model, the decoder was being trained in the forward cycle to regenerate the

input image. While, the encoder was being trained to disentangle the input to specified and

unspecified latent factors, in the reverse cycle.

4.0.3.2.1.1 Reconstruction Loss : Owing to the fact that the decoder is trained only in

the forward cycle, it might not have been trained sufficiently enough to reconstruct sharper

images, so, we thought of introducing a reconstruction loss term in the reverse cycle too. Since,

in the reverse cycle, we practically discard the unspecified-latent factors disentangled by the

encoder in the first step; we can re-use those by feeding them into the decoder in the last step

along with the style information (generated at that step) to generate an image and minimize

the reconstruction loss between X1&X
′′′
1 and X2 & X ′′′2 [as described in Figure 4.2].

• Quantitative Results : Table 4.2

• Renderings of transferred features : Figure 4.5
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4.0.3.2.1.2 Adversarial Loss : With the recent success of adversarial loss functions in

generating sharp images, we also tried to improve image reconstruction quality by incorporating

an adversarial loss term in the reverse cycle loss. Wherein, (1) both the decoder and encoder

and (2) only the decoder (since, the encoder should focus solely on disentangling the input

into specified and unspecified latent factors.); were trained adversarially to make sure that both

X1&X
′′
1 and X2 & X ′′2 belong to the same class label by the introduction of a discriminator

(labelled Adv (same class)) in the model [Figure 4.4].

• Quantitative Results : Table 4.2

• Renderings of transferred features : Figure 4.6

4.0.3.2.1.3 Minimizing the Wasserstein Distance : Replacing the L1 loss between the

two data samples in the reverse cycle with wasserstein distance.

• Quantitative Results : Table 4.2

• Renderings of transferred features : Figure 4.7

Figure 4.4: Incorporation of adversarial loss term in the reverse cycle loss.

4.0.3.2.2 Replacing vanilla VAE with PixelVAE :

We tried replacing the vanilla VAE with PixelVAE [25], a VAE implementing a tractable likelihood

function (unlike the approximate estimated lower bound likelihood function for vanilla VAEs)

using an auto-regressive decoder, in the proposed model. On implementing PixelVAE in pytorch,

we found no significant improvements in the image reconstruction quality when compared to

that of a vanilla VAE for MNIST dataset; the comparision was done for both random sampling

16



Architecture z dim s dim z train acc. z test acc. s train acc. s test acc.

Incorporating Adversarial Loss (MNIST)

Vanilla 16 16 17.72 17.56 99.72 98.35

Only Decoder 16 16 18.356 18.038 98.35 97.005

Both 16 16 23.36 23.277 99.058 97.906

Incorporating Reconstruction Loss (MNIST)

With 16 16 14.09 14.25 99.89 98.377

Without 16 16 17.72 17.56 99.72 98.35

Wasserstien Distance in Loss (MNIST)

With 16 16 16.7935 16.3361 99.8063 98.3273

Without 16 16 17.72 17.56 99.72 98.35

Table 4.2: Experiments for better insights - Quantitative results for all the experiments per-
formed. Here, z is the unspecified domain class representation and s is the specified domain
class representation. Since we are aiming for disentangled representations for unspecified and
specified factors of variation, lower accuracy is better for the z latent space and a higher accuracy
is better for the s latent space.

[Figure 4.17] and image reconstructions [Figure 4.18] (owing to it’s auto-regressive nature, and

hence substantial image generation time, PixelVAE reconstructions were not compared to vanilla

VAE on MultiPIE).
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(a) Without Reconstruction Loss (b) With Reconstruction Loss

Figure 4.5: Renderings of transferred features, for Jha et al’s model with / without the recon-
struction loss term in the reverse cycle loss. Where class subspace is same along the columns
and style subspace is same along the rows. Note: row containing the digit ‘7’ shows the best
comparison amongst the two approaches.
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(a) Only Decoder (b) Vanilla (c) Both encoder and decoder

Figure 4.6: Renderings of transferred features, for models with adversarial loss incorporated in
the reverse cycle loss function; with columns comprising of renderings for the models (a) where
in only the decoder is trained adversarially, (b) vanilla cycle consistent VAE and (c) where in
both encoder and decoder were trained adversarially.
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(a) With wasserstien distance (b) Vanilla or L1 norm

(c) Variation t-SNE without reparam (d) Variation t-SNE with reparam

(e) Class t-SNE

Figure 4.7: Minimizing the wasserstien distance instead of the L1 norm between the unseen
class samples in the reverse cycle.
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(a) Unseen images for seen identities (b) Unspecified domain from unseen identities

(c) Specified domain from unseen identities (d) Both specified and unspecified domain from unseen identities

Figure 4.8: Renderings of transferred features (for unspecified domain dimentionality = 128 and
specified domain dimentionality = 512), for both models on MultiPIE dataset with specified
domain being identity for (a) Unseen images for seen identities, (b) Unspecified domain from
unseen identities, (c) Specified domain from unseen identities and (d) Both specified and un-
specified domain from unseen identities. Here the specified component or identity is same along
the columns and unspecified domain is same along the rows.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Linear interpolation results for our model (for unspecified domain dimentionality =
128 and specified domain dimentionality = 512) in the z and s latent spaces. The images in
the top-left and the bottom-right corner are taken from the test set. Like Fig. 4.8, z variable is
constant in the rows, while s is constant in the columns.
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(a) (b)

(c) (d)

Figure 4.10: Reconstructions obtained on passing the latent manifolds with fixed specified do-
main(extracted from the test images) and a randomly sampling the unspecified domain through
the decoder of our model (for unspecified domain dimentionality = 128 and specified domain
dimentionality = 512). Here the specified component or identity is same along the columns and
unspecified domain is same along the rows.

(a) Specified subspace of test images (b) Unspecified subspace of test images (C) Specified subspace of all classes.

Figure 4.11: t-SNE plot visualization for MultiPIE dataset with specified factor as identity for
unspecified domain dimentionality = 128 and specified domain dimentionality = 512. (a) Plot
of specified subspace for test images i.e. unseen images of seen classes (here identity), (b) Plot
of unspecified subspace for test images i.e. unseen images of seen classes (here identity) and
(c) Plot of specified subspace for all the classes - seen as well as unseen; here 0 to 19 (blue to
light green) are the seen classes and 20 - 29 (yellow to red) are unseen classes. It is observed
that the specified component of the unseen classes falls in between the already seen classes in a
rather unstructured fashion - hence, the reconstructions for the same in Figure 4.8 (d) are close
to those of the seen identities, since the decoder tends to recreate an average identity for the
unseen data point based on it’s neighbouring seen classes.
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(a) (b)

(c) (d)

Figure 4.12: Renderings of transferred features (for unspecified domain dimentionality = 576
and specified domain dimentionality = 64), for both models on MultiPIE dataset with specified
domain being pose for test images. Here the specified component or identity is same along the
columns and unspecified domain is same along the rows.
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(a) Test images Expression Transfer (b) Cross-Dataset Expression Transfer

Figure 4.13: Renderings of transferred features (for unspecified domain dimentionality = 576
and specified domain dimentionality = 64), for both models on MultiPIE dataset with specified
domain being expression for (a) Test images (unseen images) and (b) Expression transfer from
UTK-face dataset (not at all trained on). Here the specified component or identity is same along
the columns and unspecified domain is same along the rows.
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(a) Trained with one unseen class image (b) Trained with one unseen class image

(c) Trained with ten unseen class image (d) Trained with ten unseen class image

(e) Trained with zero unseen class image

Figure 4.14: Few-Shot experiments with unseen class = 7, 8, 9. Training solely 7.
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(a) Trained with zero unseen class image (b) Trained with zero unseen class image

(c) Trained with one unseen class image (d) Trained with one unseen class image

(e) Trained with one unseen class image (f) Trained with one unseen class image

Figure 4.15: Few-Shot experiments with unseen class image being the last image in the first row
and the first column.
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(a) Trained with zero unseen class image (b) Trained with zero unseen class image

(c) Trained with one unseen class image (d) Trained with one unseen class image

(e) Trained with ten unseen class image (f) Trained with ten unseen class image

Figure 4.16: Few-Shot experiments with unseen class image (from CelebA dataset) being the
last image in the first row and the first column.
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(a) Vanilla VAE (b) PixelVAE

Figure 4.17: Random sampling results comparison for PixelVAE and vanilla VAE.

Figure 4.18: Image reconstruction comparison between PixelVAE and vanilla VAE. First row
is the input image, second contains the vanilla VAE reconstructions and third the PixelVAE
reconstructions.
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Chapter 5

Conclusion

For disentangling, our model (Jha et al. [3]) work disentangles the pose and identity information

better than Mathieu et al.’s work - the sate-of-the-art adversarial approach. It is evident from

the quantitative results (table 4.1), and the t-SNE plots; however, due to the variational nature

of the model proposed the renderings of transferred features produces blurry outputs.

DR-GAN [21] generates compelling results in the target pose domain, but doesn’t disentangle

the specified domain information, the decoder is trained to act as a sieve in order to extract the

necessary identity information to reconstruct the frontal pose image, however, the class/style

factors can’t be retrieved separately using this particular approach.

Image reconstruction quality improvement by incorporating loss function modification gave us a

better insight as to how the proposed model works the best; with the encoder’s sole purpose being

disentangling the input image to unspecified and specified latent factors and decoder being the

only one responsible for composing and reconstructing these disentangled components. Results

for adversarial loss incorporation suggest that training both the encoder and decoder performed

better than just training the decoder or vanilla model in terms of image reconstruction quality,

but, it degraded the disentanglement quality compared to that of the vanilla cycle consistent

disentangling model (by 5% increase of the classifier accuracy in the unspecified domain). On

the other hand, incorporation of reconstruction loss improved the quality of disentanglement

and the quality of image reconstruction (which is most evident when comparing the ‘7’ digit row

in figure 4.5).

On implementing PixelVAE, we found no significant improvements in the image reconstruction

quality when compared to that of a vanilla VAE for MNIST dataset.
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Chapter 6

Future Work

The following could be done to improve the work even further:

• Improving the image regeneration quality, with no adverse effect on the classification

accuracies of both unspecified and specified domain, i.e. with no adverse effect to the

structure of the disentangled representations obtained, , with or without retaining the

non-adversarial nature of the proposed model.

• Improving the results for the few-shot learning problem and optimizing it to be a zero-shot

learning model.
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